Hiperglucemia o hiperglicemia y estrés oxidativo en el paciente diabético

![image](upload://fr2L0vxHFB7FQUuUNt0ZSbt2pGy.jpeg) Some evidences that relate the oxygen reactive species to the main mechanisms and that explain the complications observed in patients with diabetes mellitus were reviewed. The generation of advanced glycation products, the activation of the pathway of the polyols and of hexosamines, as well as the activation of the proteins kinase C are closely associated with the generation of oxygen reactive species that lead to a chronic oxidative stress in these patients. Some references suggesting that a possible antioxidant treatment may improve their clinical picture were reviewed.

Key words: Oxygen reactive species, hyperglycemia, oxidative stress, diabetes mellitus.

Referencias bibliográficas
1. Dirección Nacional de Estadísticas y Centro Nacional de Información Médica. Anuario Estadístico de Salud en Cuba año 2003 [en línea] Disponible en: http://www.sld.cu/servicios/estadisticas/
2. Triana ME. La hiperglicemia y sus efectos tóxicos. Un concepto patogénico para la micro y macroangiopatía diabética. Rev Cubana Angiol Cir Vasc 2001;2(2):131-41.
3. Ceriello A, Hanefeld M, Leiter L, Monnier I, Moses A, Owens D, et al. Postpandrial glucose regulation and diabetic complications. Arch Intern Med 2004;164(19):2090-5.
4. Díaz M, Baiza LA, Ibáñez MA, Pascoe D, Guzmán AM, Kumate J. Aspectos moleculares del daño tisular inducido por la hiperglucemia crónica. Gac Med Mex 2004;140(4):437-47.
5. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813-20.
6. Menon V, Ram M, Dorn J, Armstrong D, Muti P, Freudenheim JL, et al. Oxidative stress and glucose levels in a population-based sample. Diabet Med 2004;21(12):1346-52.
7. Ford ES, Mokdad AH, Ajani UA, Liu S. Associations between concentrations of alpha and gamma- tocopherol on concentrations of glucose, glycosylated haemoglobin, insulin and C-peptide among US adults. Br J Nutr 2005;93(2):249-55.
8. Tsubouchi H, Inoguchi T, Inuo M, Kakimoto M, Sonta T, Sonoda N, et al. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic beta cell line, MIN6- a role of NAD(P)H oxidase in beta-cells. Biochem Biophys Res Commun 2004;326(1):60-5.
9. Mohanty P Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose Challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metabol 2000;85(8):2970-3.
10. Kunisaki M, Umeda F, Yamauchi T, Masakado M, Nawata H. High glucose reduces specific binding for D-alpha-tocopherol in cultured endothelial aortic cells. Diabetes 1993;42(8):1138-46.
11. Ceriello A, Dello Russo P, Amstad P, Ceruti P. High glucose induces antioxidant enzymes in human endothelial cells in culture. Evidence linking hyperglicemia and oxidative stress. Diabetes 1996;45(4):471-7.
12. Ceriello A, Morocutti A, Mercuri F, Quagliaro L, Moro M, Damante G, et al. Defective intracellular antioxidant enzyme production in type 1 diabetic patients with nephropathy. Diabetes 2000;49(12):2170-7.
13. Clapés S, Armas D, Sánchez D, Lemani M, Márquez I, Valdés M, et al. Algunos indicadores de estrés oxidativo en niños diabéticos. Rev Cubana Farm 2002;26(2):203-5.
14. Salardi S, Zucchini S, Elleri D, Grossi G, Bargossi AM, Gualandi S, et al. High glucose levels induce an increase in membrane antioxidants, in terms of vitamin E and coenzyme Q10, in children and adolescents with type 1 diabetes. Diabetes Care 2004;27:630-1.
15. Bellizi M, Dutta-Roy AK, James WP. High D-glucose does not affect binding of alpha-tocopherol to human erytrocytes. Mol Cell Biochem 1997;170(1-2):187-93.
16. Smit AJ, Lutgers HL. The clinical relevance of advanced glycation end-products (AGE) and recent development in pharmaceutics to reduce AGE accumulation. Curr Med Chem 2004;11(20):2767-84.
17. Zhang WR, Hou FF, Liu SX, Guo ZJ, Zhou ZM, Wang GB, et al. Advanced glycation end products accelerate atherosclerosis via enhancement of oxidative stress. Zhonghua Yi Xue Za Zhi 2004;84(13):1066-72.
18. Mullakay CJ, Edelstein D, Brownlee M. Free Radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Byophys Res Commun 1990;173(3):932-9.
19. Shangari N, O´Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 2004;68(7):1433-42.
20. Yamagishi S, Takeuchi M. Nifedipine inhibits gene expression of receptor for advanced glycation end products (RAGE) in endothelial cells by suppressing reactive oxygen species generation. Drugs Exp Clin Res 2004;30(4):169-75.
21. Argiles JM, López-Soriano J, Ortiz MA, Pou JM, López- Soriano F. Interleukin-1 and beta-Cell function: more than one second messenger? Endocrine Reviews 1992;13(3):515-24.
22. Díaz D. Óxido nítrico, mutagénesis y cáncer. Rev Cubana Invest Biomed 2004;23(3):184-9.
23. Xue-Liang D, Edelstein D, Rossetti L, Fantus IG, Golberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. PNAS 2000;97(22):12222-6.

24. Cisneros E. La glutatión reductasa y su importancia biomédica. Rev Cubana Invest Biomed 1995;14(1).

25. Céspedes EM, Hernández I, Llópiz N. Enzimas que participan como barreras fiosiológicas para eliminar radicales libres: II. Catalasa. Rev Cubana Invest Biomed 1996;15(2).

26. Fukase S, Sato S, Mori K, Secchi EF, Kador PF. Polyol pathway and NADPH-dependent reductases in dog leukocytes. J Diabetes Complications 1996;10(6):304-13.
27. McClain DA, Crook ED. Hexosamines and insulin resistance. Diabetes 1996;45(8):1003-9.
28. Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED. High glucose-induced transforming growth factor beta 1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 1998;101(1):160-9.
29. Wender-Ozegowska E, Koslik J, Biczysko R, Ozegowsky S. Changes of oxidative stress parameters in diabetic pregnancy. Free Radic Res 2004;38(8):795-803
30. Horal M, Zhang Z, Stanton R, Virkamaki A, Loeken MR. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: involvement in diabetic teratogenesis. Birth Defects Res A Clin Mol Teratol 2004;70(8):519-27.
31. Chibber R, Ben-Mahmud BM, Kohner EM, et al. Protein kinase C beta 2-dependent phosphorylation of core 2 GlcNAc-T promotes leucocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes 2003;52(6):1519-27.
32. Yuan SY, Ustinova EE, Wu MH, Tinsley JH, Xu W, Korompai FL, et al. Protein kinase C activation contributes to microvascular barrier dysfunction in the heart at early stages of diabetes. Circ Res 2000;87(5):412-7.
33. Idris I, Gray S, Donnelly R. Protein Kinase C activation: isozyme-specific effect on methabolism and cardiovascular complications in diabetes. Diabetología 2001;44(6):659-73.
34. Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving Protein Kinase C in Diabetes and insulin resistance. Arterioscler Thromb Vasc Biol 2005;25(3):487-96.

35. Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. Protein kinase C (delta) dependent activation of oxidative stress in adipocytes of obese and insuline resistant mice: role for NADPH oxidase. Am J Physiol Endrocrinol Metab Am J Physiol Endocrinol Metab 2005;288(2):405-11.

36. Sonta T, Inoguchi T, Tsubouchi H, Sekiguchi N, Kobayashi K, Matsumoto S, et al. Evaluation of oxidative stress in diabetic animals by in vivo electron spin resonance measurement- Role of protein kinase C. Diabetes Res Clin Pract 2004;66(1):109-13.
37. Fiordaliso F, Bianchi R, Staszewsky L, Cuccovillo I, Doni M, Laragione T, et al. Antioxidant treatment attenuates hyperglicemia-induced cardiomyocyte death in rats. J Mol Cell Cardiol 2004;37(5):959-68.
38. Brownlee M. A radical explanation for glucose- induced beta cell dysfunction. J Clin Invest 2003;112(12):1788-90.
39. Green K, Brand MD, Murphy MP. Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 2004;53:110-8.
40. Kaneto H, Kawamori D, Nakatani Y, Gorogawa S, Matsuoka TA. Oxidative stress and the JNK pathway as a potential therapeutic target for diabetes. Drug News Perspect 2004;17(7):447-53.
41. Tankova T, Koev D, Dakovska L. Alpha-lipoic acid in the treatment of autonomic diabetic neuropathy (controlled, randomized, open-label study) Rom J Intern Med 2004;42(2):457-64.
42. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Keaney JF Jr, Creager MA. Oral antioxidant therapy improves endothelial function in Type 1 but not Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 2003;285(6):2392-8.

Recibido: 15 de julio de 2005. Aprobado: 10 de mayo de 2006.
Lic. Dariel Díaz Arce. Escuela Latinoamericana de Medicina, Santa Fe, Playa, Ciudad de La Habana. Teléf: 2014123. Correo electrónico: dariel@elacm.sld.cu

Web-Stat web statistics